best practices
67 TopicsGet certified as an Azure AI Engineer (AI-102) this summer?
For developers, the accreditation as an Azure AI Engineer—certified through the rigorous AI-102 exam—has become a golden ticket to career acceleration. It isn’t just about coding chatbots or fine-tuning machine learning models; it’s about gaining the confidence (for you and for your business) that you can wield Azure’s toolkits to configure AI solutions that augment human capability. Before we dive in, if you’re planning to become certified as an Azure AI Engineer, you may find this Starter Learning Plan (AI 102) valuable—recently curated by a group of Microsoft experts, purposed for your success. We recommend adding it to your existing learning portfolio. It’s a light introduction that should take less than four hours, but it offers a solid glimpse into what to expect on your journey and the breadth of solutions you might craft in the future. From revolutionizing customer service with intelligent agents to optimizing supply chains through predictive analytics, Azure AI engineers sit at the confluence of technological ingenuity and business transformation. For those with an appetite for problem-solving and a vision for AI-driven futures, this certification isn’t just another badge—it’s an assertion of expertise in a field where demand is outpacing supply. Securing that expertise, however, requires more than just a weekend of cramming. Today’s aspiring AI engineers navigate an ecosystem of learning that is as modern as the field itself. Gone are the days when one could rely solely on a stack of manuals; now, candidates immerse themselves in a medley of Microsoft Learn modules, hands-on labs, AI-powered coding assistants, and community-led study groups. Many take a pragmatic approach—building real-world projects using Azure Cognitive Services and Machine Learning Studio to cement their understanding. Others lean on practice exams and structured courses from platforms like Pluralsight and Udemy, ensuring they aren’t just memorizing but internalizing the core principles. The AI-102 exam doesn’t reward rote knowledge—it demands fluency in designing, deploying, and securing AI solutions, making thorough preparation an indispensable part of the journey. In addition to the above learning plan, we want to provide a few other tips. Understand the Exam Objectives: Begin by thoroughly reviewing the AI-102 study guide. This document outlines the key topics and skills assessed, including planning and managing Azure AI solutions, implementing computer vision and natural language processing solutions, and deploying generative AI solutions. Familiarizing yourself with these areas will provide a structured framework for your study plan. Continuous memorization is part of your study. But if you get a bit bored from your flashcards and look for more ‘storyline’ style learning content, we recommend adding MSFT employee created learning plan to your mix. They are scenario-based and focus more on providing you with a structured understanding of how to do XYZ on Azure. Here are 3 examples: Modernize for AI Readiness Build AI apps with Azure Re-platform AI applications Hands-On Practice: Practical experience is invaluable. Engage with Azure AI services directly by building projects that incorporate computer vision, natural language processing, and other AI functionalities. This hands-on approach not only reinforces theoretical knowledge but also enhances problem-solving skills in real-world scenarios. Utilize Practice Assessments: Assess your readiness by taking advantage of free practice assessments provided by Microsoft. These assessments mirror the style and difficulty of actual exam questions, offering detailed feedback and links to additional resources for areas that may require further study. Stay Updated on Exam Changes: Certification exams are periodically updated to reflect the latest technologies and practices. Regularly consult the official exam page to stay informed about any changes in exam content or structure. Participate in Community Discussions: Engaging with peers through forums and study groups can provide diverse perspectives and insights. The Microsoft Q&A platform is a valuable resource for asking questions, sharing knowledge, and learning from the experiences of others preparing for the same certification. By systematically incorporating these strategies into your preparation, you'll be well-positioned to excel in the AI-102 exam and advance your career as an Azure AI Engineer. If you have additional tips or thoughts, let us know in the comments area. Good luck!Speed Up OpenAI Embedding By 4x With This Simple Trick!
In today’s fast-paced world of AI applications, optimizing performance should be one of your top priorities. This guide walks you through a simple yet powerful way to reduce OpenAI embedding response sizes by 75%—cutting them from 32 KB to just 8 KB per request. By switching from float32 to base64 encoding in your Retrieval-Augmented Generation (RAG) system, you can achieve a 4x efficiency boost, minimizing network overhead, saving costs and dramatically improving responsiveness. Let's consider the following scenario. Use Case: RAG Application Processing a 10-Page PDF A user interacts with a RAG-powered application that processes a 10-page PDF and uses OpenAI embedding models to make the document searchable from an LLM. The goal is to show how optimizing embedding response size impacts overall system performance. Step 1: Embedding Creation from the 10-Page PDF In a typical RAG system, the first step is to embed documents (in this case, a 10-page PDF) to store meaningful vectors that will later be retrieved for answering queries. The PDF is split into chunks. In our example, each chunk contains approximately 100 tokens (for the sake of simplicity), but the recommended chunk size varies based on the language and the embedding model. Assumptions for the PDF: - A 10-page PDF has approximately 3325 tokens (about 300 tokens per page). - You’ll split this document into 34 chunks (each containing 100 tokens). - Each chunk will then be sent to the embedding OpenAI API for processing. Step 2: The User Interacts with the RAG Application Once the embeddings for the PDF are created, the user interacts with the RAG application, querying it multiple times. Each query is processed by retrieving the most relevant pieces of the document using the previously created embeddings. For simplicity, let’s assume: - The user sends 10 queries, each containing 200 tokens. - Each query requires 2 embedding requests (since the query is split into 100-token chunks for embedding). - After embedding the query, the system performs retrieval and returns the most relevant documents (the RAG response). Embedding Response Size The OpenAI Embeddings models take an input of tokens (the text to embed) and return a list of numbers called a vector. This list of numbers represents the “embedding” of the input in the model so that it can be compared with another vector to measure similarity. In RAG, we use embedding models to quickly search for relevant data in a vector database. By default, embeddings are serialized as an array of floating-point values in a JSON document so each response from the embedding API is relatively large. The array values are 32-bit floating point numbers, or float32. Each float32 value occupies 4 bytes, and the embedding vector returned by models like OpenAI’s text-embedding-ada-002 typically consists of 1536-dimensional vectors. The challenge is the size of the embedding response: - Each response consists of 1536 float32 values (one per dimension). - 1536 float32 values result in 6144 bytes (1536 × 4 bytes). - When serialized as UTF-8 for transmission over the network, this results in approximately 32 KB per response due to additional serialization overhead (like delimiters). Optimizing Embedding Response Size One approach to optimize the embedding response size is to serialize the embedding as base64. This encoding reduces the overall size by compressing the data, while maintaining the integrity of the embedding information. This leads to a significant reduction in the size of the embedding response. With base64-encoded embeddings, the response size reduces from 32 KB to approximately 8 KB, as demonstrated below: base64 vs float32 Min (Bytes) Max (Bytes) Mean (Bytes) Min (+) Max (+) Mean (+) 100 tokens embeddings: text-embedding-3-small 32673.000 32751.000 32703.800 8192.000 (4.0x) (74.9%) 8192.000 (4.0x) (75.0%) 8192.000 (4.0x) (74.9%) 100 tokens embeddings: text-embedding-3-large 65757.000 65893.000 65810.200 16384.000 (4.0x) (75.1%) 16384.000 (4.0x) (75.1%) 16384.000 (4.0x) (75.1%) 100 tokens embeddings: text-embedding-ada-002 32882.000 32939.000 32909.000 8192.000 (4.0x) (75.1%) 8192.000 (4.0x) (75.2%) 8192.000 (4.0x) (75.1%) The source code of this benchmark can be found at: https://github.com/manekinekko/rich-bench-node (kudos to Anthony Shaw for creating the rich-bench python runner) Comparing the Two Scenarios Let’s break down and compare the total performance of the system in two scenarios: Scenario 1: Embeddings Serialized as float32 (32 KB per Response) Scenario 2: Embeddings Serialized as base64 (8 KB per Response) Scenario 1: Embeddings Serialized as Float32 In this scenario, the PDF embedding creation and user queries involve larger responses due to float32 serialization. Let’s compute the total response size for each phase: 1. Embedding Creation for the PDF: - 34 embedding requests (one per 100-token chunk). - 34 responses with 32 KB each. Total size for PDF embedding responses: 34 × 32 KB = 1088 KB = 1.088 MB 2. User Interactions with the RAG App: - Each user query consists of 200 tokens (which is split into 2 chunks of 100 tokens). - 10 user queries, requiring 2 embedding responses per query (for 2 chunks). - Each embedding response is 32 KB. Total size for user queries: Embedding responses: 20 × 32 KB = 640 KB. RAG responses: 10 × 32 KB = 320 KB. Total size for user interactions: 640 KB (embedding) + 320 KB (RAG) = 960 KB. 3. Total Size: Total size for embedding responses (PDF + user queries): 1088 KB + 640 KB = 1.728 MB Total size for RAG responses: 320 KB. Overall total size for all 10 responses: 1728 KB + 320 KB = 2048 KB = 2 MB Scenario 2: Embeddings Serialized as Base64 In this optimized scenario, the embedding response size is reduced to 8 KB by using base64 encoding. 1. Embedding Creation for the PDF: - 34 embedding requests. - 34 responses with 8 KB each. Total size for PDF embedding responses: 34 × 8 KB = 272 KB. 2. User Interactions with the RAG App: - Embedding responses for 10 queries, 2 responses per query. - Each embedding response is 8 KB. Total size for user queries: Embedding responses: 20 × 8 KB = 160 KB. RAG responses: 10 × 8 KB = 80 KB. Total size for user interactions: 160 KB (embedding) + 80 KB (RAG) = 240 KB 3. Total Size (Optimized Scenario): Total size for embedding responses (PDF + user queries): 272 KB + 160 KB = 432 KB. Total size for RAG responses: 80 KB. Overall total size for all 10 responses: 432 KB + 80 KB = 512 KB Performance Gain: Comparison Between Scenarios The optimized scenario (base64 encoding) is 4 times smaller than the original (float32 encoding): 2048 / 512 = 4 times smaller. The total size reduction between the two scenarios is: 2048 KB - 512 KB = 1536 KB = 1.536 MB. And the reduction in data size is: (1536 / 2048) × 100 = 75% reduction. How to Configure base64 encoding format When getting a vector representation of a given input that can be easily consumed by machine learning models and algorithms, as a developer, you usually call either the OpenAI API endpoint directly or use one of the official libraries for your programming language. Calling the OpenAI or Azure OpenAI APIs Using OpenAI endpoint: curl -X POST "https://api.openai.com/v1/embeddings" \ -H "Content-Type: application/json" \ -H "Authorization: Bearer YOUR_API_KEY" \ -d '{ "input": "The five boxing wizards jump quickly", "model": "text-embedding-ada-002", "encoding_format": "base64" }' Or, calling Azure OpenAI resources: curl -X POST "https://{endpoint}/openai/deployments/{deployment-id}/embeddings?api-version=2024-10-21" \ -H "Content-Type: application/json" \ -H "api-key: YOUR_API_KEY" \ -d '{ "input": ["The five boxing wizards jump quickly"], "encoding_format": "base64" }' Using OpenAI Libraries JavaScript/TypeScript const response = await client.embeddings.create({ input: "The five boxing wizards jump quickly", model: "text-embedding-3-small", encoding_format: "base64" }); A pull request has been sent to the openai SDK for Node.js repository to make base64 the default encoding when/if the user does not provide an encoding. Please feel free to give that PR a thumb up. Python embedding = client.embeddings.create( input="The five boxing wizards jump quickly", model="text-embedding-3-small", encoding_format="base64" ) NB: from 1.62 the openai SDK for Python will default to base64. Java EmbeddingCreateParams embeddingCreateParams = EmbeddingCreateParams .builder() .input("The five boxing wizards jump quickly") .encodingFormat(EncodingFormat.BASE64) .model("text-embedding-3-small") .build(); .NET The openai-dotnet library is already enforcing the base64 encoding, and does not allow setting encoding_format by the user (see). Conclusion By optimizing the embedding response serialization from float32 to base64, you achieved a 75% reduction in data size and improved performance by 4x. This reduction significantly enhances the efficiency of your RAG application, especially when processing large documents like PDFs and handling multiple user queries. For 1 million users sending 1,000 requests per month, the total size saved would be approximately 22.9 TB per month simply by using base64 encoded embeddings. As demonstrated, optimizing the size of the API responses is not only crucial for reducing network overhead but also for improving the overall responsiveness of your application. In a world where efficiency and scalability are key to delivering robust AI-powered solutions, this optimization can make a substantial difference in both performance and user experience. ■ Shoutout to my colleague Anthony Shaw for the the long and great discussions we had about embedding optimisations.Learn how to develop innovative AI solutions with updated Azure skilling paths
The rapid evolution of generative AI is reshaping how organizations operate, innovate, and deliver value. Professionals who develop expertise in generative AI development, prompt engineering, and AI lifecycle management are increasingly valuable to organizations looking to harness these powerful capabilities while ensuring responsible and effective implementation. In this blog, we’re excited to share our newly refreshed series of Plans on Microsoft Learn that aim to supply your team with the tools and knowledge to leverage the latest AI technologies, including: Find the best model for your generative AI solution with Azure AI Foundry Create agentic AI solutions by using Azure AI Foundry Build secure and responsible AI solutions and manage generative AI lifecycles From sophisticated AI agents that can autonomously perform complex tasks to advanced chat models that enable natural human-AI collaboration, these technologies are becoming essential business tools rather than optional enhancements. Let’s take a look at the latest developments and unlock their full potential with our curated training resources from Microsoft Learn. Simplify the process of choosing an AI model with Azure AI Foundry Choosing the optimal generative AI model is essential for any solution, requiring careful evaluation of task complexity, data requirements, and computational constraints. Azure AI Foundry streamlines this decision-making process by offering diverse pre-trained models, fine-tuning capabilities, and comprehensive MLOps tools that enable businesses to test, optimize, and scale their AI applications while maintaining enterprise-grade security and compliance. Our Plan on Microsoft Learn titled Find the best model for your generative AI solution with Azure AI Foundry will guide you through the process of discovering and deploying the best models for creating generative AI solutions with Azure AI Foundry, including: Learn about the differences and strengths of various language models Find out how to integrate and use AI models in your applications to enhance functionality and user experience. Rapidly create intelligent, market-ready multimodal applications with Azure models, and explore industry-specific models. In addition, you’ll have the chance to take part in a Microsoft Azure Virtual Training Day, with interactive sessions and expert guidance to help you skill up on Azure AI features and capabilities. By engaging with this Plan on Microsoft Learn, you’ll also have the chance to prove your skills and earn a Microsoft Certification. Leap into the future of agentic AI solutions with Azure After choosing the right model for your generative AI purposes, our next Plan on Microsoft Learn goes a step further by introducing agentic AI solutions. A significant evolution in generative AI, agentic AI solutions enable autonomous decision-making, problem-solving, and task execution without constant human intervention. These AI agents can perceive their environment, adapt to new inputs, and take proactive actions, making them valuable across various industries. In the Create agentic AI solutions by using Azure AI Foundry Plan on Microsoft Learn, you’ll find out how developing agentic AI solutions requires a platform that provides scalability, adaptability, and security. With pre-built AI models, MLOps tools, and deep integrations with Azure services, Azure AI Foundry simplifies the development of custom AI agents that can interact with data, make real-time decisions, and continuously learn from new information. You’ll also: Learn how to describe the core features and capabilities of Azure AI Foundry, provision and manage Azure AI resources, create and manage AI projects, and determine when to use Azure AI Foundry. Discover how to customize with RAG in Azure AI Foundry, Azure AI Foundry SDK, or Azure OpenAI Service to look for answers in documents. Learn how to use Azure AI Agent Service, a comprehensive suite of feature-rich, managed capabilities, to bring together the models, data, tools, and services your enterprise needs to automate business processes There’s also a Microsoft Virtual Training Day featuring interactive sessions and expert guidance, and you can validate your skills by earning a Microsoft Certification. Safeguard your AI systems for security and fairness Widespread AI adoption demands rigorous security, fairness, and transparency safeguards to prevent bias, privacy breaches, and vulnerabilities that lead to unethical outcomes or non-compliance. Organizations must implement responsible AI through robust data governance, explainability, bias mitigation, and user safety protocols, while protecting sensitive data and ensuring outputs align with ethical standards. Our third Plan on Microsoft Learn, Build secure and responsible AI solutions and manage generative AI lifecycles, is designed to introduce the basics of AI security and responsible AI to help increase the security posture of AI environments. You’ll not only learn how to evaluate and improve generative AI outputs for quality and safety, but you’ll also: Gain an understanding of the basic concepts of AI security and responsible AI to help increase the security posture of AI environments. Learn how to assess and improve generative AI outputs for quality and safety. Discover how to help reduce risks by using Azure AI Content Safety to detect, moderate, and manage harmful content. Learn more by taking part in an interactive, expert-guided Microsoft Virtual Training Day to deepen your understanding of core AI concepts. Got a skilling question? Our new Ask Learn AI assistant is here to help Beyond our comprehensive Plans on Microsoft Learn, we’re also excited to introduce Ask Learn, our newest skilling innovation! Ask Learn is an AI assistant that can answer questions, clarify concepts, and define terms throughout your training experience. Ask Learn is your Copilot for getting skilled in AI, helping to answer your questions within the Microsoft Learn interface, so you don’t have to search elsewhere for the information. Simply click the Ask Learn icon at the top corner of the page to activate! Begin your generative AI skilling journey with curated Azure skilling Plans Azure AI Foundry provides the necessary platform to train, test, and deploy AI solutions at scale, and with the expert-curated skilling resources available in our newly refreshed Plans on Microsoft learn, your teams can accelerate the creation of intelligent, self-improving AI agents tailored to your business needs. Get started today! Find the best model for your generative AI solution with Azure AI Foundry Create agentic AI solutions by using Azure AI Foundry Build secure and responsible AI solutions and manage generative AI lifecyclesRAG Time: Ultimate Guide to Mastering RAG!
RAG Time is a brand-new AI learning series designed to help developers unlock the full potential of Retrieval-Augmented Generation (RAG). If you’ve been looking for a way to build smarter, more efficient AI systems—join us in RAG Time, every Wednesday 9AM PT from March 5 through April 2 on Microsoft Developer YouTube. What's in RAG Time? RAG Time is a five-part learning journey, with new videos and blog posts releasing every week in March. The series features: 🔥 Expert-led discussions breaking down RAG fundamentals and best practices 🎤 Exclusive leadership interviews with AI leaders ⚡ Hands-on demos & real-world case studies showing RAG in action 🎨 Creative doodle summaries making complex concepts easier to grasp and remember 🛠 Samples & resources in the RAG Time repository so you can start building today What You’ll Learn The series is structured into five learning journeys, each tackling a crucial aspect of RAG-powered AI: 📌 March 5th, 9AM PT - Journey 1: RAG and Knowledge Retrieval Fundamentals – Start with the basics! Learn how RAG, search indexing, and vector search work together to create smarter AI retrieval systems. 📌 March 12th, 9AM PT - Journey 2: Build the Ultimate Retrieval System for RAG – Go beyond the fundamentals with hybrid search, semantic ranking, and relevance tuning to refine how AI retrieves the most relevant information. 📌 March 19th, 9AM PT - Journey 3: Optimize Your Vector Index for Scale – Learn how to scale vector search efficiently, optimize storage, and implement advanced techniques like quantization and Matryoshka learning for large-scale AI applications. 📌 March 26th, 9AM PT - Journey 4: RAG for All Your Data: Multimodal and Beyond – Move beyond text-based retrieval! Discover how to integrate images, audio, and structured data into your RAG workflows and leverage multimodal pipelines for next-level AI capabilities. 📌 April 2nd, 9AM PT - Journey 5: Hero Use Cases for RAG – Explore real-world implementations, industry-leading examples, and best practices, while diving into Responsible AI considerations to ensure ethical and impactful solutions. Why You Should Watch If you're a developer, data scientist, or AI enthusiast, this series is built for you! Whether you’re just getting started or looking to master enterprise-grade retrieval systems, RAG Time delivers practical knowledge, hands-on resources, and expert insights to help you stay ahead. Journey starts here 🚀 Start your journey from the RAG Time repo: https://aka.ms/rag-time. You'll find all the information about the video series, samples, documentation and doodles in the repo! Share your experience and feedback on GitHub discussions.Mastering API Management - Demos and best practices (presentation highlight)
I recently had the opportunity to present at the Wellington .NET User Group about Azure API Management (APIM) and common pitfalls I see teams encounter. A key takeaway is that all aspects of a solution, including APIM, should be under source control to ensure consistency, collaboration, and reliability. APIOps is a DevOps approach for managing APIs in APIM, focusing on automation, CI/CD, and version control. Many teams either reinvent their own solutions or avoid versioning APIM altogether due to a lack of awareness or time to adopt APIOps. My advice: take the time to evaluate APIOps before rolling your own—it's a flexible, open-source project with an active community.Secure your Kubernetes workloads with Cloud NGFW AKS Landing Zone
Microsoft Azure and Palo Alto Networks - Azure Marketplace offer for setting up an Azure Kubernetes Service (AKS) and securing it with the Cloud NGFW. This offer makes the provisioning of an AKS cluster straightforward while leveraging the advanced network security in Azure powered by Palo Alto Networks.SecretLess App Registrations in Entra ID
Eliminate secrets in OAuth flows with Entra ID’s secretless app registrations. By integrating managed identities, developers can enhance security while simplifying authentication. This modern approach enables passwordless backends, streamlining access to Azure resources without traditional secrets or certificates. Paired with tools like .NET Aspire, it ensures seamless local debugging and secure Azure deployments. Perfect for optimizing identity management, this solution is ideal for building secure, scalable applications. Explore Entra ID’s capabilities and future-proof your authentication process today!AI Toolkit for VS Code January Update
AI Toolkit is a VS Code extension aiming to empower AI engineers in transforming their curiosity into advanced generative AI applications. This toolkit, featuring both local-enabled and cloud-accelerated inner loop capabilities, is set to ease model exploration, prompt engineering, and the creation and evaluation of generative applications. We are pleased to announce the January Update to the toolkit with support for OpenAI's o1 model and enhancements in the Model Playground and Bulk Run features. What's New? January’s update brings several exciting new features to boost your productivity in AI development. Here's a closer look at what's included: Support for OpenAI’s new o1 Model: We've added access to GitHub hosted OpenAI’s latest o1 model. This new model replaces the o1-preview and offers even better performance in handling complex tasks. You can start interacting with the o1 model within VS Code for free by using the latest AI Toolkit update. Chat History Support in Model Playground: We have heard your feedback that tracking past model interactions is crucial. The Model Playground has been updated to include support for chat history. This feature saves chat history as individual files stored entirely on your local machine, ensuring privacy and security. Bulk Run with Prompt Templating: The Bulk Run feature, introduced in the AI Toolkit December release, now supports prompt templating with variables. This allows users to create templates for prompts, insert variables, and run them in bulk. This enhancement simplifies the process of testing multiple scenarios and models. Stay tuned for more updates and enhancements as we continue to innovate and support your journey in AI development. Try out the AI Toolkit for Visual Studio Code, share your thoughts, and file issues and suggest features in our GitHub repo. Thank you for being a part of this journey with us!Microsoft Startup Spotlight Live Series
As a founder, developer, or AI enthusiast, have you ever wondered what AI startups are solving, the technologies they use, or the journeys their founders have taken? How do they tackle challenges and create impactful solutions? These are questions we often ask, and there’s no better way to find answers than by hearing directly from the innovators themselves. I’m excited to introduce the Startup Spotlight Series—a bi-weekly live event hosted on the Microsoft Reactor YouTube channel. This series offers a unique opportunity to: Hear exclusive stories from AI startup founders. See live demonstrations of their technologies. Learn about the latest AI trends and real-world solutions for customers’ challenges 💡 Why Should You Tune In? The Startup Spotlight Series isn’t just another livestream—it’s a unique opportunity designed to provide insights, inspiration, and practical value for a variety of audiences: Startups Founders: Learn from the successes (and struggles) of AI startup leaders. Gain actionable insights into building innovative products, scaling businesses, and navigating challenges. Developers: Dive into the technical details with live product demos and behind-the-scenes discussions. See how their solutions are being built and deployed. Students: Discover the latest AI trends and practical applications. Discover how startups are leveraging AI to create impactful solutions. Whether you're looking for inspiration or considering a future in AI, this series is packed with insights to help you grow. AI Enthusiasts: Stay ahead of the curve by learning how startups are revolutionizing industries. From transformative use cases to the stories behind the technologies, you’ll leave every episode inspired. Have burning questions about AI? Each session includes a live Q&A, where you can ask founders directly about their journeys, challenges, and advice. This is your chance to engage with the people shaping the future of AI! Thursday Jan 30 2025, Startup Spotlight: Activeloop Join us for the second episode of the Startup Spotlight Live Series, a space where AI startups share their journeys, showcasing their innovative technologies and demonstrating live product use cases. In this episode, Gabriela de Queiroz sits down with Davit Buniatyan from Activeloop to explore how they’re leveraging Microsoft to grow, scale, and address real-world challenges. Thursday Feb 13th 2025, Startup Spotlight: Synthesized Join us for the third episode of the Startup Spotlight Live Series, a space where AI startups share their journeys, showcasing their innovative technologies and demonstrating live product use cases. In this episode, Gabriela de Queiroz sits down with Nicolai Baldin from Synthesized to explore how they’re leveraging Microsoft to grow, scale, and address real-world challenges. Thursday Feb 27th 2025, Startup Spotlight: Dataloop Join us for the fourth episode of the Startup Spotlight Live Series, a space where AI startups share their journeys, showcasing their innovative technologies and demonstrating live product use cases. In this episode, Gabriela de Queiroz sits down with Dataloop to explore how they’re leveraging Microsoft to grow, scale, and address real-world challenges. Join Us If you’re as excited about the future of AI as I am, I encourage you to tune in to the Startup Spotlight Series. Episodes air every other Thursday at 10:00 AM Pacific Time on the Microsoft Reactor YouTube channel. Can’t make it live? Don’t worry—episodes will be recorded and available for you to watch later at your convenience at Microsoft Reactor Youtube Sign up now to receive reminders and updates for upcoming episodes: aka.ms/startup-spotlight 🚀' But that's not all... Startups can apply (aka.ms/ss-credits) and get tons of benefits: Up to $150,000 in Azure credits Free access to leading AI models through Azure, including OpenAI's models, Llama 2 from Meta, and more. 1:1 meetings with experts who can help solve immediate business challenges, plus provide technical guidance on the latest in AI. 30+ additional free and discounted tools, tech, and services from Microsoft and our partners including M365, GitHub, LinkedIn Premium and more. 👋 See you there!