microsoft ignite 2024
9 TopicsAnnouncing Model Fine-Tuning Collaborations: Weights & Biases, Scale AI, Gretel and Statsig
As AI continues to transform industries, the ability to fine-tune models and customize them for specific use cases has become more critical than ever. Fine-tuning can enable companies to align models with their unique business goals, ensuring that AI solutions deliver results with greater precision However, organizations face several hurdles in their model customization journey: Lack of end-to-end tooling: Organizations struggle with fine-tuning foundation models due to complex processes, and the absence of tracking and evaluation tools for modifications. Data scarcity and quality: Limited access to large, high-quality datasets, along with privacy issues and high costs, complicate model training and fine-tuning. Shortage of fine-tuning expertise and pre-trained models: Many companies lack specialized knowledge and access to refined models for fine-tuning. Insufficient experimentation tools: A lack of tools for ongoing experimentation in production limits optimization of key variables like model diversity and operational efficiency. To address these challenges, Azure AI Foundry is pleased to announce new collaborations with Weights & Biases, Scale AI, Gretel and Statsig to streamline the process of model fine-tuning and experimentation through advanced tools, synthetic data and specialized expertise. Weights & Biases integration with Azure OpenAI Service: Making end-to-end fine-tuning accessible with tooling The integration of Weights & Biases with Azure OpenAI Service offers a comprehensive end-to-end solution for enterprises aiming to fine-tune foundation models such as GPT-4, GPT-4o, and GPT-4o mini. This collaboration provides a seamless connection between Azure OpenAI Service and Weights and Biases Models which offers powerful capabilities for experiment tracking, visualization, model management, and collaboration. With the integration, users can also utilize Weights and Biases Weave to evaluate, monitor, and iterate on the performance of their fine-tuned models powered AI applications in real-time. Azure's scalable infrastructure allows organizations to handle the computational demands of fine-tuning, while Weights and Biases offers robust capabilities for fine-tuning experimentation and evaluation of LLM-powered applications. Whether optimizing GPT-4o for complex reasoning tasks or using the lightweight GPT-4o mini for real-time applications, the integration simplifies the customization of models to meet enterprise-specific needs. This collaboration addresses the growing demand for tailored AI models in industries such as retail and finance, where fine-tuning can significantly improve customer service chatbots or complex financial analysis. Azure Open AI Service and Weights & Biases integration is now available in public preview. For further details on Azure OpenAI Service and Weights & Biases integration including real-world use-cases and a demo, refer to the blog here. Scale AI and Azure Collaboration: Confidently Implement Agentic GenAI Solutions in Production Scale AI collaborates with Azure AI Foundry to offer advanced fine-tuning and model customization for enterprise use cases. It enhances the performance of Azure AI Foundry models by providing high-quality data transformation, fine-tuning and customization services, end-to-end solution development and specialized Generative AI expertise. This collaboration helps improve the performance of AI-driven applications and Azure AI services such as Azure AI Agent in Azure AI Foundry, while reducing production time and driving business impact. "Scale is excited to partner with Azure to help our customers transform their proprietary data into real business value with end-to-end GenAI Solutions, including model fine-tuning and customization in Azure." Vijay Karunamurthy, Field CTO, Scale AI Checkout a demo in BRK116 session showcasing how Scale AI’s fine-tuned models can improve agents in Azure AI Foundry and Copilot Studio. In the coming months, Scale AI will offer fine-tuning services for Azure AI Agents in Azure AI Foundry. For more details, please refer to this blog and start transforming your AI initiatives by exploring Scale AI on the Azure Marketplace. Gretel and Azure OpenAI Service Collaboration: Revolutionizing data pipeline for custom AI models Azure AI Foundry is collaborating with Gretel, a pioneer in synthetic data and privacy technology, to remove data bottlenecks and bring advanced AI development capabilities to our customers. Gretel's platform enables Azure users to generate high-quality datasets for ML and AI through multiple approaches - from prompts and seed examples to differential privacy-preserved synthetic data. This technology helps organizations overcome key challenges in AI development including data availability, privacy requirements, and high development costs with support for structured, unstructured, and hybrid text data formats. Through this collaboration, customers can seamlessly generate datasets tailored to their specific use cases and industry needs using Gretel, then use them directly in Azure OpenAI Service for fine-tuning. This integration greatly reduces both costs and time compared to traditional data labeling methods, while maintaining strong privacy and compliance standards. The collaboration enables new use cases for Azure AI Foundry customers who can now easily use synthetic data generated by Gretel for training and fine-tuning models. Some of the new use cases include cost-effective improvements for Small Language Models (SLMs), improved reasoning abilities of Large Language Models (LLMs), and scalable data generation from limited real-world examples. This value is already being realized by leading enterprises. “EY is leveraging the privacy-protected synthetic data to fine-tune Azure OpenAI Service models in the financial domain," said John Thompson, Global Client Technology AI Lead at EY. "Using this technology with differential privacy guarantees, we generate highly accurate synthetic datasets—within 1% of real data accuracy—that safeguard sensitive financial information and prevent PII exposure. This approach ensures model safety through privacy attack simulations and robust data quality reporting. With this integration, we can safely fine-tune models for our specific financial use cases while upholding the highest compliance and regulatory standards.” The Gretel integration with Azure OpenAI Service is available now through Gretel SDK. Explore this blog describing a finance industry case study and checkout details in technical documentation for fine-tuning Azure OpenAI Service models with synthetic data from Gretel. Visit this page to learn more Statsig and Azure Collaboration: Enabling Experimentation in AI Applications Statsig is a platform for feature management and experimentation that helps teams manage releases, run powerful experiments, and measure the performance of their products. Statsig and Azure AI Foundry are collaborating to enable customers to easily configure and run experiments (A/B tests) in Azure AI-powered applications, using Statsig SDKs in Python, NodeJS and .NET. With these Statsig SDKs, customers can manage the configuration of their AI applications, manage the release of new configurations, run A/B tests to optimize model and application performance, and automatically collect metrics at the model and application level. Please check out this page to learn more about the collaboration and get detailed documentation here. Conclusion The new collaborations between Azure and Weights & Biases, Scale AI, Gretel and Statsig represent a significant step forward in simplifying the process of AI model customization. These collaborations aim to address the common pain points associated with fine-tuning models, including lack of end-to-end tooling, data scarcity and privacy concerns, lack of expertise and experimentation tooling. Through these collaborations, Azure AI Foundry will empower organizations to fine-tune and customize models more efficiently, ultimately enabling faster, more accurate AI deployments. Whether it’s through better model tracking, access to synthetic data, or scalable data preparation services, these collaborations will help businesses unlock the full potential of AI.2.7KViews3likes1CommentAnnouncing management center and other tools to secure and govern Azure AI Foundry
We’re pleased to share new security and IT governance capabilities in Azure AI Foundry that can help organizations build and scale GenAI solutions that are secure by default, including a new management center, granular networking controls, and the general availability of data and service connections.3.1KViews2likes0CommentsIgnite 2024: Streamlining AI Development with an Enhanced User Interface, Accessibility, and Learning Experiences in Azure AI Foundry portal
Announcing Azure AI Foundry, a unified platform that simplifies AI development and management. The platform portal (formerly Azure AI Studio) features a revamped user interface, enhanced model catalog, new management center, improved accessibility and learning, making it easier than ever for Developers and IT Admins to design, customize, and manage AI apps and agents efficiently.5.1KViews2likes0CommentsAI reports: Improve AI governance and GenAIOps with consistent documentation
AI reports are designed to help organizations improve cross-functional observability, collaboration, and governance when developing, deploying, and operating generative AI applications and fine-tuned or custom models. These reports support AI governance best practices by helping developers document the purpose of their AI model or application, its features, potential risks or harms, and applied mitigations, so that cross-functional teams can track and assess production-readiness throughout the AI development lifecycle and then monitor it in production. Starting in December, AI reports will be available in private preview in a US and EU Azure region for Azure AI Foundry customers. To request access to the private preview of AI reports, please complete the Interest Form. Furthermore, we are excited to announce new collaborations with Credo AI and Saidot to support customers’ end-to-end AI governance. By integrating the best of Azure AI with innovative and industry-leading AI governance solutions, we hope to provide our customers with choice and help empower greater cross-functional collaboration to align AI solutions with their own principles and regulatory requirements. Building on learnings at Microsoft Microsoft’s approach for governing generative AI applications builds on our Responsible AI Standard and the National Institute of Standards and Technology’s AI Risk Management Framework. This approach requires teams to map, measure, and manage risks for generative applications throughout their development cycle. A core asset of the first—and iterative—map phase is the Responsible AI Impact Assessment. These assessments help identify potential risks and their associated harms, as well as mitigations to address them. As development of an AI system progresses, additional iterations can help development teams document their progress in risk mitigation and allow experts to review the evaluations and mitigations and make further recommendations or requirements before products are launched. Post-deployment, these assessments become a source of truth for ongoing governance and audits, and help guide how to monitor the application in production. You can learn more about Microsoft’s approach to AI governance in our Responsible AI Transparency Report and find a Responsible AI Impact Assessment Guide and example template on our website. How AI reports support AI impact assessments and GenAIOps AI reports can help organizations govern their GenAI models and applications by making it easier for developers to provide the information needed for cross-functional teams to assess production-readiness throughout the GenAIOps lifecycle. Developers will be able to assemble key project details, such as the intended business use case, potential risks and harms, model card, model endpoint configuration, content safety filter settings, and evaluation results into a unified AI report from within their development environment. Teams can then publish these reports to a central dashboard in the Azure AI Foundry portal, where business leaders can track, review, update, and assess reports from across their organization. Users can also export AI reports in PDF and industry-standard SPDX 3.0 AI BOM formats, for integration into existing GRC workflows. These reports can then be used by the development team, their business leaders, and AI, data, and other risk professionals to determine if an AI model or application is fit for purpose and ready for production as part of their AI impact assessment processes. Being versioned assets, AI reports can also help organizations build a consistent bridge across experimentation, evaluation, and GenAIOps by documenting what metrics were evaluated, what will be monitored in production, and the thresholds that will be used to flag an issue for incident response. For even greater control, organizations can choose to implement a release gate or policy as part of their GenAIOps that validates whether an AI report has been reviewed and approved for production. Key benefits of these capabilities include: Observability: Provide cross-functional teams with a shared view of AI models and applications in development, in review, and in production, including how these projects perform in key quality and safety evaluations. Collaboration: Enable consistent information-sharing between GRC, development, and operational teams using a consistent and extensible AI report template, accelerating feedback loops and minimizing non-coding time for developers. Governance: Facilitate responsible AI development across the GenAIOps lifecycle, reinforcing consistent standards, practices, and accountability as projects evolve or expand over time. Build production-ready GenAI apps with Azure AI Foundry If you are interested in testing AI reports and providing feedback to the product team, please request access to the private preview by completing the Interest Form. Want to learn more about building trustworthy GenAI applications with Azure AI? Here’s more guidance and exciting announcements to support your GenAIOps and governance workflows from Microsoft Ignite: Learn about new GenAI evaluation capabilities in Azure AI Foundry Learn about new GenAI monitoring capabilities in Azure AI Foundry Learn about new IT governance capabilities in Azure AI Foundry Whether you’re joining in person or online, we can’t wait to see you at Microsoft Ignite 2024. We’ll share the latest from Azure AI and go deeper into capabilities that support trustworthy AI with these sessions: Keynote: Microsoft Ignite Keynote Breakout: Trustworthy AI: Future trends and best practices Breakout: Trustworthy AI: Advanced AI risk evaluation and mitigation Demo: Simulate, evaluate, and improve GenAI outputs with Azure AI Foundry Demo: Track and manage GenAI app risks with AI reports in Azure AI Foundry We’ll also be available for questions in the Connection Hub on Level 3, where you can find “ask the expert” stations for Azure AI and Trustworthy AI.2KViews1like0Comments