azure active directory
41 TopicsSuperfast using Web App and Managed Identity to invoke Function App triggers
TOC Introduction Setup References 1. Introduction Many enterprises prefer not to use App Keys to invoke Function App triggers, as they are concerned that these fixed strings might be exposed. This method allows you to invoke Function App triggers using Managed Identity for enhanced security. I will provide examples in both Bash and Node.js. 2. Setup 1. Create a Linux Python 3.11 Function App 1.1. Configure Authentication to block unauthenticated callers while allowing the Web App’s Managed Identity to authenticate. Identity Provider Microsoft Choose a tenant for your application and it's users Workforce Configuration App registration type Create Name [automatically generated] Client Secret expiration [fit-in your business purpose] Supported Account Type Any Microsoft Entra Directory - Multi-Tenant Client application requirement Allow requests from any application Identity requirement Allow requests from any identity Tenant requirement Use default restrictions based on issuer Token store [checked] 1.2. Create an anonymous trigger. Since your app is already protected by App Registration, additional Function App-level protection is unnecessary; otherwise, you will need a Function Key to trigger it. 1.3. Once the Function App is configured, try accessing the endpoint directly—you should receive a 401 Unauthorized error, confirming that triggers cannot be accessed without proper Managed Identity authorization. 1.4. After making these changes, wait 10 minutes for the settings to take effect. 2. Create a Linux Node.js 20 Web App and Obtain an Access Token and Invoke the Function App Trigger Using Web App (Bash Example) 2.1. Enable System Assigned Managed Identity in the Web App settings. 2.2. Open Kudu SSH Console for the Web App. 2.3. Run the following commands, making the necessary modifications: subscriptionsID → Replace with your Subscription ID. resourceGroupsID → Replace with your Resource Group ID. application_id_uri → Replace with the Application ID URI from your Function App’s App Registration. https://az-9640-faapp.azurewebsites.net/api/test_trigger → Replace with the corresponding Function App trigger URL. # Please setup the target resource to yours subscriptionsID="01d39075-XXXX-XXXX-XXXX-XXXXXXXXXXXX" resourceGroupsID="XXXX" # Variable Setting (No need to change) identityEndpoint="$IDENTITY_ENDPOINT" identityHeader="$IDENTITY_HEADER" application_id_uri="api://9c0012ad-XXXX-XXXX-XXXX-XXXXXXXXXXXX" # Install necessary tool apt install -y jq # Get Access Token tokenUri="${identityEndpoint}?resource=${application_id_uri}&api-version=2019-08-01" accessToken=$(curl -s -H "Metadata: true" -H "X-IDENTITY-HEADER: $identityHeader" "$tokenUri" | jq -r '.access_token') echo "Access Token: $accessToken" # Run Trigger response=$(curl -s -o response.json -w "%{http_code}" -X GET "https://az-9640-myfa.azurewebsites.net/api/my_test_trigger" -H "Authorization: Bearer $accessToken") echo "HTTP Status Code: $response" echo "Response Body:" cat response.json 2.4. If everything is set up correctly, you should see a successful invocation result. 3. Invoke the Function App Trigger Using Web App (nodejs Example) I have also provide my example, which you can modify accordingly and save it to /home/site/wwwroot/callFunctionApp.js and run it cd /home/site/wwwroot/ vi callFunctionApp.js npm init -y npm install azure/identity axios node callFunctionApp.js // callFunctionApp.js const { DefaultAzureCredential } = require("@azure/identity"); const axios = require("axios"); async function callFunctionApp() { try { const applicationIdUri = "api://9c0012ad-XXXX-XXXX-XXXX-XXXXXXXXXXXX"; // Change here const credential = new DefaultAzureCredential(); console.log("Requesting token..."); const tokenResponse = await credential.getToken(applicationIdUri); if (!tokenResponse || !tokenResponse.token) { throw new Error("Failed to acquire access token"); } const accessToken = tokenResponse.token; console.log("Token acquired:", accessToken); const apiUrl = "https://az-9640-myfa.azurewebsites.net/api/my_test_trigger"; // Change here console.log("Calling the API now..."); const response = await axios.get(apiUrl, { headers: { Authorization: `Bearer ${accessToken}`, }, }); console.log("HTTP Status Code:", response.status); console.log("Response Body:", response.data); } catch (error) { console.error("Failed to call the function", error.response ? error.response.data : error.message); } } callFunctionApp(); Below is my execution result: 3. References Tutorial: Managed Identity to Invoke Azure Functions | Microsoft Learn How to Invoke Azure Function App with Managed Identity | by Krizzia 🤖 | Medium Configure Microsoft Entra authentication - Azure App Service | Microsoft Learn197Views0likes0CommentsAzure AD Risky User question
Hi Tech community, I already try to find this out on the internet, but I don't get it yet. Sometimes in our tenant we run into some risky users, with risky sign-ins. Do I need to set those users on "dismiss user risk", if the loggin is legit? Another thing, If I select the Risk State on dismissed in the filter, I see many dismissed with actor Azure AD. Will Azure AD automatic dismissed some risky users? When I look on this .doc site https://docs.microsoft.com/en-us/azure/active-directory/identity-protection/howto-identity-protection-risk-feedback I cannot find my answer there. Regards, RicardoSolved2.6KViews0likes3CommentsConnection Between Web App and O365 Resources: Using SharePoint as an Example
TOC Introduction [not recommended] Application permission [not recommended] Delegate permission with Device Code Flow Managed Identity Multi-Tenant App Registration Restrict Resources for Application permission References Introduction In late 2024, Microsoft Entra enforced MFA (Multi-Factor Authentication) for all user login processes. This change has caused some Web Apps using delegated permissions to fail in acquiring access tokens, thereby interrupting communication with O365 resources. This tutorial will present various alternative solutions tailored to different business requirements. We will use a Linux Python Web App as an example in the following sections. [not recommended] Application permission Traditionally, using delegated permissions has the advantages of being convenient, quick, and straightforward, without being limited by whether the Web App and Target resources (e.g., SharePoint) are in the same tenant. This is because it leverages the user identity in the SharePoint tenant as the login user. However, its drawbacks are quite evident—it is not secure. Delegated permissions are not designed for automated processes (i.e., Web Apps), and if the associated connection string (i.e., app secret) is obtained by a malicious user, it can be directly exploited. Against this backdrop, Microsoft Entra enforced MFA for all user login processes in late 2024. Since delegated permissions rely on user-based authentication, they are also impacted. Specifically, if your automated processes originally used delegated permissions to interact with other resources, they are likely to be interrupted by errors similar to the following in recent times. AADSTS50076: Due to a configuration change made by your administrator, or because you moved to a new location, you must use multi-factor authentication to access '00000003-0000-0000-c000-000000000000' The root cause lies in the choice of permission type. While delegated permissions can technically be used for automated processes, there is a more appropriate option—application permissions, which are specifically designed for use in automated workflows. Therefore, when facing such issues, the quickest solution is to create a set of application permissions, align their settings with your previous delegated permissions, and then update your code to use the new app ID and secret to interact with the target resource. This method resolves the issue caused by the mandatory MFA process interruption. However, it is still not entirely secure, as the app secret, if obtained by a malicious user, can be exploited directly. Nonetheless, it serves as a temporary solution while planning for a large-scale modification or refactor of your existing system. [not recommended] Delegate permission with Device Code Flow Similarly, here's another temporary solution. The advantage of this approach is that you don't even need to create a new set of application permissions. Instead, you can retain the existing delegated permissions and resolve the issue by integrating Device Code Flow. Let's see how this can be achieved. First, navigate to Microsoft Entra > App Registration > Your Application > Authentication, and enable "Allow public client flows". Next, modify your code to implement the following method to acquire the token. Replace [YOUR_TENANT_ID] and [YOUR_APPLICATION_ID] with your own values. import os, atexit, msal, sys def get_access_token_device(): cache_filename = os.path.join( os.getenv("XDG_RUNTIME_DIR", ""), "my_cache.bin" ) cache = msal.SerializableTokenCache() if os.path.exists(cache_filename): cache.deserialize(open(cache_filename, "r").read()) atexit.register(lambda: open(cache_filename, "w").write(cache.serialize()) if cache.has_state_changed else None ) config = { "authority": "https://login.microsoftonline.com/[YOUR_TENANT_ID]", "client_id": "[YOUR_APPLICATIOM_ID]", "scope": ["https://graph.microsoft.com/.default"] } app = msal.PublicClientApplication( config["client_id"], authority=config["authority"], token_cache=cache, ) result = None accounts = app.get_accounts() if accounts: print("Pick the account you want to use to proceed:") for a in accounts: print(a["username"]) chosen = accounts[0] result = app.acquire_token_silent(["User.Read"], account=chosen) if not result: flow = app.initiate_device_flow(scopes=config["scope"]) print(flow["message"]) sys.stdout.flush() result = app.acquire_token_by_device_flow(flow) if "access_token" in result: access_token = result["access_token"] return access_token else: error = result.get("error") if error == "invalid_client": print("Invalid client ID.Please check your Azure AD application configuration") else: print(error) Demonstrating the Process Before acquiring the token for the first time, there is no cache file named my_cache.bin in your project directory. Start the test code, which includes obtaining the token and interacting with the corresponding service (e.g., SharePoint) using the token. Since this is the first use, the system will prompt you to manually visit https://microsoft.com/devicelogin and input the provided code. Once the manual process is complete, the system will obtain the token and execute the workflow. After acquiring the token, the cache file my_cache.bin will appear in your project directory. This file contains the access_token and refresh_token. For subsequent processes, whether triggered manually or automatically, the system will no longer prompt for manual login. The cached token has a validity period of approximately one hour, which may seem insufficient. However, the acquire_token_silent function in the program will automatically use the refresh token to renew the access token and update the cache. Therefore, as long as an internal script or web job is triggered at least once every hour, the token can theoretically be used continuously. Managed Identity Using Managed Identity to enable interaction between an Azure Web App and other resources is currently the best solution. It ensures that no sensitive information (e.g., app secrets) is included in the code and guarantees that only the current Web App can use this authentication method. Therefore, it meets both convenience and security requirements for production environments. Let’s take a detailed look at how to set it up. Step 1: Setup Managed Identity You will get an Object ID for further use. Step 2: Enterprise Application for Managed Identity Your Managed Identity will generate a corresponding Enterprise Application in Microsoft Entra. However, unlike App Registration, where permissions can be assigned directly via the Azure Portal, Enterprise Application permissions must be configured through commands. Step 3: Log in to Azure via CloudShell Use your account to access Azure Portal, open a CloudShell, and input the following command. This step will require you to log in with your credentials using the displayed code: Connect-MgGraph -Scopes "Application.ReadWrite.All", "AppRoleAssignment.ReadWrite.All" Continue by inputting the following command to target the Enterprise Application corresponding to your Managed Identity that requires permission assignment: $PrincipalId = "<Your web app managed identity object id>" $ResourceId = (Get-MgServicePrincipal -Filter "displayName eq 'Microsoft Graph'" | Select-Object -ExpandProperty Id) Step 4: Assign Permissions to the Enterprise Application Execute the following commands to assign permissions. Key Points: This example assigns all permissions with the prefix Sites.*. However, you can modify this to request only the necessary permissions, such as: Sites.Selected Sites.Read.All Sites.ReadWrite.All Sites.Manage.All Sites.FullControl.All If you do not wish to assign all permissions, you can change { $_.Value -like "*Sites.*" } to the specific permission you need, for example: { $_.Value -like "*Sites.Selected*" } Each time you modify the permission, you will need to rerun all the commands below. $AppRoles = Get-MgServicePrincipal -Filter "displayName eq 'Microsoft Graph'" -Property AppRoles | Select -ExpandProperty AppRoles | Where-Object { $_.Value -like "*Sites.*" } $AppRoles | ForEach-Object { $params = @{ "PrincipalId" = $PrincipalId "ResourceId" = $ResourceId "AppRoleId" = $_.Id } New-MgServicePrincipalAppRoleAssignment -ServicePrincipalId $PrincipalId -BodyParameter $params } Step 5: Confirm Assigned Permissions If, in Azure Portal, you see a screen similar to this: (Include screenshot or example text for granted permissions) This means that the necessary permissions have been successfully assigned. Step 6: Retrieve a Token in Python In your Python code, you can use the following approach to retrieve the token: from azure.identity import ManagedIdentityCredential def get_access_token(): credential = ManagedIdentityCredential() token = credential.get_token("https://graph.microsoft.com/.default") return token.token Important Notes: When permissions are assigned or removed in the Enterprise Application, the ManagedIdentityCredential in your Python code caches the token for a while. These changes will not take effect immediately. You need to restart your application and wait approximately 10 minutes for the changes to take effect. Step 7: Perform Operations with the Token Finally, you can use this token to perform the desired operations. Below is an example of creating a file in SharePoint: You will notice that the uploader’s identity is no longer a person but instead the app itself, indicating that Managed Identity is indeed in effect and functioning properly. While this method is effective, it is limited by the inability of Managed Identity to handle cross-tenant resource requests. I will introduce one final method to resolve this limitation. Multi-Tenant App Registration In many business scenarios, resources are distributed across different tenants. For example, SharePoint is managed by Company (Tenant) B, while the Web App is developed by Company (Tenant) A. Since these resources belong to different tenants, Managed Identity cannot be used in such cases. Instead, we need to use a Multi-Tenant Application to resolve the issue. The principle of this approach is to utilize an Entra ID Application created by the administrator of Tenant A (i.e., the tenant that owns the Web App) that allows cross-tenant use. This application will be pre-authorized by future user from Tenant B (i.e., the administrator of the tenant that owns SharePoint) to perform operations related to SharePoint. It should be noted that the entire configuration process requires the participation of administrators from both tenants to a certain extent. Please refer to the following demonstration. This is a sequential tutorial; please note that the execution order cannot be changed. Step 1: Actions Required by the Administrator of the Tenant that Owns the Web App 1.1. In Microsoft Entra, create an Enterprise Application and select "Multi-Tenant." After creation, note down the Application ID. 1.2. In App Registration under AAD, locate the previously created application, generate an App Secret, and record it. 1.3. Still in App Registration, configure the necessary permissions. Choose "Application Permissions", then determine which permissions (all starting with "Sites.") are needed based on the actual operations your Web App will perform on SharePoint. For demonstration purposes, all permissions are selected here. Step 2: Actions Required by the Administrator of the Tenant that Owns SharePoint 2.1. Use the PowerShell interface to log in to Azure and select the tenant where SharePoint resides. az login --allow-no-subscriptions --use-device-code 2.2. Add the Multi-Tenant Application to this tenant. az ad sp create --id <App id get from step 1.1> 2.3. Visit the Azure Portal, go to Enterprise Applications, locate the Multi-Tenant Application added earlier, and navigate to Permissions to grant the permissions specified in step 1.3. Step 3: Actions Required by the Administrator of the Tenant that Owns the Web App 3.1. In your Python code, you can use the following method to obtain an access token: from msal import ConfidentialClientApplication def get_access_token_cross_tenant(): tenant_id = "your-sharepoint-tenant-id" # Tenant ID where the SharePoint resides (i.e., shown in step 2.1) client_id = "your-multi-tenant-app-client-id" # App ID created in step 1.1 client_secret = "your-app-secret" # Secret created in step 1.2 authority = f"https://login.microsoftonline.com/{tenant_id}" app = ConfidentialClientApplication( client_id, authority=authority, client_credential=client_secret ) scopes = ["https://graph.microsoft.com/.default"] token_response = app.acquire_token_for_client(scopes=scopes) return token_response.get("access_token") 3.2. Use this token to perform the required operations. Restrict Resources for Application permission Application permission, allows authorization under the App’s identity, enabling access to all SharePoint sites within the tenant, which could be overly broad for certain use cases. To restrict this permission to access a limited number of SharePoint sites, we need to configure the following settings: Actions Required by the Administrator of the Tenant that Owns SharePoint During the authorization process, only select Sites.Selected. (refer to Step 4 from Managed Identity, and Step 1.3 from Multu-tenant App Registration) Subsequently, configure access separately for different SharePoint sites. During the process, we will create a temporary App Registration to issue an access token, allowing us to assign specific SharePoint sites' read/write permissions to the target Application. Once the permission settings are completed, this App Registration can be deleted. Refer to the above images, we need to note down the App Registration's object ID and tenant ID. Additionally, we need to create an app secret and grant it the Application permission Sites.FullControl.All. Once the setup is complete, the token can be obtained using the following command. $tenantId = "<Your_Tenant_ID>" $clientId = "<Your_Temp_AppID>" $clientSecret = "<Your_Temp_App_Secret>" $scope = "https://graph.microsoft.com/.default" $url = "https://login.microsoftonline.com/$tenantId/oauth2/v2.0/token" $body = @{ grant_type = "client_credentials" client_id = $clientId client_secret = $clientSecret scope = $scope } $response = Invoke-RestMethod -Uri $url -Method Post -Body $body $accessToken = $response.access_token Before granting the write permission to the target application, even if the Application Permission already has the Sites.Selected scope, an error will still occur. Checking the current SharePoint site's allowed access list shows that it is empty. $headers = @{ "Authorization" = "Bearer $accessToken" "Content-Type" = "application/json" } Invoke-RestMethod -Method Get -Uri "https://graph.microsoft.com/v1.0/sites/<Your_SharePoint_Site>.sharepoint.com" -Headers $headers Next, we manually add the corresponding Application to the SharePoint site's allowed access list and assign it the write permission. $headers = @{ "Authorization" = "Bearer $accessToken" "Content-Type" = "application/json" } $body = @{ roles = @("write") grantedToIdentities = @( @{ application = @{ id = "<Your_Target_AppID>" displayName = "<Your_Target_AppName>" } } ) grantedToIdentitiesV2 = @( @{ application = @{ id = "<Your_Target_AppID>" displayName = "<Your_Target_AppName>" } } ) } | ConvertTo-Json -Depth 10 Invoke-RestMethod -Method Post -Uri "https://graph.microsoft.com/v1.0/sites/<Your_SharePoint_Site>.sharepoint.com/permissions" -Headers $headers -Body $body Rechecking the current SharePoint site's allowed access list confirms the addition. After that, writing files to the site will succeed, and you could delete the temp App Registration. References Microsoft will require MFA for all Azure users Acquire a token to call a web API using device code flow (desktop app) - Microsoft identity platform | Microsoft Learn Implement cross-tenant communication by using multitenant applications - Azure Architecture Center515Views1like0CommentsConnection Between Web App and O365 Resources: Using Mail as an Example
TOC Introduction User Management Grant Permission Setup Security Mail Group Test References Introduction When using the Graph API to manage mail-related services, setting the permission to Delegate permission restricts the authorization to the user’s identity, limiting management to the specific user’s mailbox. While this might not be sufficient for certain business scenarios, Application permission, on the other hand, allows authorization under the App’s identity, enabling access to all users’ mailboxes within the tenant, which could be overly broad for certain use cases. Therefore, a method is required that allows the management of a specific mailbox using the App’s identity. This scenario is not recommended to use Delegate permission and requires some prerequisites, which are outlined in this article: Connection Between Web App and O365 Resources: Using SharePoint as an Example. User Management In your Microsoft Entra ID tenant, you will need: An admin user with permissions to "create users" and "assign roles." This user will perform the following operations. For simplicity, we’ll refer to this user as the admin user. An Exchange Administrator user who has the Exchange Administrator role. If not assigned, ensure to assign it to a user. In this example, the user is cch. A user account (or multiple users) to be managed by the Web App for mailbox operations. In this example, the user is support. Additionally, remember to visit https://admin.microsoft.com/ to assign a Microsoft 365 license to the new user, enabling mailbox access. Grant Permission For this example, we’ll use Managed Identity to grant the Mail.ReadWrite permission to the Enterprise Application corresponding to the Web App's Managed Identity. Note: Depending on your business requirements: You can replace the Managed Identity with a Multi-Tenant App Registration. You can also adjust Mail.ReadWrite to other permissions aligned with your business needs. Log in to the Azure Portal with your admin user and open a PowerShell CloudShell session. Modify and run the following commands to grant the necessary Graph API permissions to the Web App’s Managed Identity. Connect-MgGraph -Scopes "AppRoleAssignment.ReadWrite.All" $PrincipalId = "XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX" # Please setup your Managed Identity's OBJ ID $ResourceId = (Get-MgServicePrincipal -Filter "displayName eq 'Microsoft Graph'" | Select-Object -ExpandProperty Id) $AppRoles = Get-MgServicePrincipal -Filter "displayName eq 'Microsoft Graph'" -Property AppRoles | Select -ExpandProperty AppRoles | Where-Object { $_.Value -like "Mail.ReadWrite" } # Please setup your permission $AppRoles | ForEach-Object { $params = @{ "PrincipalId" = $PrincipalId "ResourceId" = $ResourceId "AppRoleId" = $_.Id } New-MgServicePrincipalAppRoleAssignment -ServicePrincipalId $PrincipalId -BodyParameter $params } Setup Security Mail Group Log in to the Azure Portal with an Exchange Administrator user, open a PowerShell CloudShell session, and run the following commands: Create a Security Mail Group. Add the mailboxes (e.g., support) that need to be accessible via the Web App to the group. Associate the Managed Identity's authorization with the Security Mail Group. az login --tenant XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX--use-device-code # Please setup your tenant id Connect-ExchangeOnline Connect-AzureAD New-DistributionGroup -Name "Policy Scope Group" -Alias "policy-scope-group" -Type Security Add-DistributionGroupMember -Identity "Policy Scope Group" -Member "XXX@XXX.com" # Please setup your receiver mailbox $AppId = "XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX" # Please setup your Managed Identity's APP ID $GroupId = (Get-AzureADGroup -SearchString "Policy Scope Group" | Select-Object ObjectId).ObjectId New-ApplicationAccessPolicy -AppId $AppId -PolicyScopeGroupId $GroupId -AccessRight RestrictAccess Important Notes Allow at least one hour for all configurations to take effect. Ensure the Microsoft 365 license has been assigned to the relevant user(s). Test You can deploy the following example code to your Web App. Replace support@xx.com with the mailbox to be accessed programmatically, and prepare another mailbox (e.g., cch@xx.com) for testing to ensure that only mailboxes within the Security Mail Group can be accessed. import requests from azure.identity import ManagedIdentityCredential def get_access_token(): credential = ManagedIdentityCredential() token = credential.get_token("https://graph.microsoft.com/.default") return token.token def get_latest_email_subject(target_email): access_token = get_access_token() headers = { "Authorization": f"Bearer {access_token}", "Content-Type": "application/json" } url = f"https://graph.microsoft.com/v1.0/users/{target_email}/mailFolders/Inbox/messages?$count=true" response = requests.get(url, headers=headers) if response.status_code == 200: data = response.json() if "value" in data and len(data["value"]) > 0: return data["value"][0].get("subject", "No Subject") else: print("No emails found in the inbox.") return None else: print("Failed to fetch emails.") print("Status Code:", response.status_code) print("Response:", response.json()) return None if __name__ == "__main__": print("=============================================") print("Fetching support@xx.com's latest email subject...") target_email = "support@xx.com" subject = get_latest_email_subject(target_email) if subject: print("Latest Email Subject:", subject) else: print("No email subject found.") print("=============================================") print("Fetching cch@xx.com's latest email subject...") target_email = "cch@xx.com" subject = get_latest_email_subject(target_email) if subject: print("Latest Email Subject:", subject) else: print("No email subject found.") After testing, you should observe that only the mailboxes of members within the Security Mail Group can be accessed by the Web App, while other mailboxes remain inaccessible. This ensures secure and specific access control. References Connection Between Web App and O365 Resources: Using SharePoint as an Example | Microsoft Community Hub Microsoft Graph permissions reference - Microsoft Graph | Microsoft Learn Connection Between Web App and O365 Resources: Using SharePoint as an Example | Microsoft Community Hub1.9KViews0likes0CommentsUse managed identity instead of AzureWebJobsStorage to connect a function app to a storage account
In a function app, usually we use appsetting AzureWebJobsStorage to connect to storage. This blog shows you how to configure a function app using Azure Active Directory identities instead of secrets or connection strings, where possible. Using identities helps you avoid accidentally leaking sensitive secrets and can provide better visibility into how data is accessed. This will not work if the storage account is in a sovereign cloud or has a custom DNS. IMPORTANT! When running in a Consumption or Elastic Premium plan, your app uses the WEBSITE_AZUREFILESCONNECTIONSTRING and WEBSITE_CONTENTSHARE settings when connecting to Azure Files on the storage account used by your function app. Azure Files doesn't support using managed identity when accessing the file share. That is to say, if your functio app is running on Consumption/EP, plan, you can only delete and recreate function app on app service plan to avoid using File Share. For more information, see Azure Files supported authentication scenarios Below are the steps to do configuration. 1. Enable system assigned identity in your function app and save it. 2. Give storage access to your function app. Search for Storage Blob Data Owner, select it. 3. If you configure a blob-triggered function app, repeat the step 2 to add Storage Account Contributor and Storage Queue Data Contributor roles which will be used for blob trigger. 4. Return to Access Control (IAM), click Role assignments, search for your function app name to confirm the roles are added successfully. 5. Navigate to your function app. Select Configuration and edit AzureWebJobsStorage. Change the name to AzureWebJobsStorage__accountname. Change the value to your storage account name. (The new setting uses a double underscore ( __ ), which is a special character in application settings.) 6. Delete the previous AzureWebJobsStorage. Then you will find your function app still works fine.76KViews7likes54CommentsConnect Azure SQL Server via User Assigned Managed Identity under Django
This tutorial will introduce how to integrate Microsoft Entra with Azure SQL Server to avoid using fixed usernames and passwords. By utilizing user-assigned managed identities as a programmatic bridge, it becomes easier for Azure-related PaaS services (such as Function App or App Services) to communicate with the database without storing connection information in plain text.3.6KViews2likes0CommentsHow to Apply Easy Auth on Web App under a High-security policy environment
With increasing emphasis on security issues, enterprises are imposing significant restrictions on internal resources and operations accessible to employees. If your Azure account does not have sufficient AAD (i.e., of Microsoft Entra) permissions, you will be unable to swiftly create easy auth in a web app. This article serves as a simple guide to walk you through the process of setting up easy authentication for your web app.3.5KViews3likes0CommentsBasic understanding on Microsoft Entra custom claims provider
When a user authenticates to an app (e.g., MS Entra ID application), a custom claims provider can be used to add claims into the token. A custom claims provider is made up of a custom authentication extension that calls an external REST API (e.g., a Function App), to fetch claims from external systems (e.g., a Database). A custom claims provider can be assigned to one or many applications.8.1KViews4likes6Comments