get started
64 TopicsEnhancing Infrastructure as Code Generation with GitHub Copilot for Azure
Discover the latest update to GitHub Copilot for Azure, designed to streamline Infrastructure as Code (IaC) generation using Bicep or Terraform. With a new update panel, developers can easily modify project details, hosting services, target services, bindings, and environment variables—all within an intuitive UI. This enhancement eliminates the need for chat-based modifications, improving efficiency and reducing errors. Save time, automate infrastructure deployment, and experience seamless cloud configuration. Try the new GitHub Copilot for Azure update today and optimize your Azure development workflow effortlessly!Unlocking the Power of Azure Container Apps in 1 Minute Video
Azure Container Apps provides a seamless way to build, deploy, and scale cloud-native applications without the complexity of managing infrastructure. Whether you’re developing microservices, APIs, or AI-powered applications, this fully managed service enables you to focus on writing code while Azure handles scalability, networking, and deployments. In this blog post, we explore five essential aspects of Azure Container Apps—each highlighted in a one-minute video. From intelligent applications and secure networking to effortless deployments and rollbacks, these insights will help you maximize the capabilities of serverless containers on Azure. Azure Container Apps - in 1 Minute Azure Container Apps is a fully managed platform designed for cloud-native applications, providing effortless deployment and scaling. It eliminates infrastructure complexity, letting developers focus on writing code while Azure automatically handles scaling based on demand. Whether running APIs, event-driven applications, or microservices, Azure Container Apps ensures high performance and flexibility with minimal operational overhead. Watch the video on YouTube Intelligent Apps with Azure Container Apps – in 1 Minute Azure Container Apps, Azure OpenAI, and Azure AI Search make it possible to build intelligent applications with Retrieval-Augmented Generation (RAG). Your app can call Azure OpenAI in real-time to generate and interpret data, while Azure AI Search retrieves relevant information, enhancing responses with up-to-date context. For advanced scenarios, AI models can execute live code via Azure Container Apps, and GPU-powered instances support fine-tuning and inferencing at scale. This seamless integration enables AI-driven applications to deliver dynamic, context-aware functionality with ease. Watch the video on YouTube Networking for Azure Container Apps: VNETs, Security Simplified – in 1 Minute Azure Container Apps provides built-in networking features, including support for Virtual Networks (VNETs) to control service-to-service communication. Secure internal traffic while exposing public endpoints with custom domain names and free certificates. Fine-tuned ingress and egress controls ensure that only the right traffic gets through, maintaining a balance between security and accessibility. Service discovery is automatic, making inter-app communication seamless within your Azure Container Apps environment. Watch the video on YouTube Azure Continuous Deployment and Observability with Azure Container Apps - in 1 Minute Azure Container Apps simplifies continuous deployment with built-in integrations for GitHub Actions and Azure DevOps pipelines. Every code change triggers a revision, ensuring smooth rollouts with zero downtime. Observability is fully integrated via Azure Monitor, Log Streaming, and the Container Console, allowing you to track performance, debug live issues, and maintain real-time visibility into your app’s health—all without interrupting operations. Watch the video on YouTube Effortless Rollbacks and Deployments with Azure Container Apps – in 1 Minute With Azure Container Apps, every deployment creates a new revision, allowing multiple versions to run simultaneously. This enables safe, real-time testing of updates without disrupting production. Rolling back is instant—just select a previous revision and restore your app effortlessly. This powerful revision control system ensures that deployments remain flexible, reliable, and low-risk. Watch the video on YouTube Watch the Full Playlist For a complete overview of Azure Container Apps capabilities, watch the full JavaScript on Azure Container Apps YouTube Playlist Create Your Own AI-Powered Video Content Inspired by these short-form technical videos? You can create your own AI-generated videos using Azure AI to automate scriptwriting and voiceovers. Whether you’re a content creator, or business looking to showcase technical concepts, Azure AI makes it easy to generate professional-looking explainer content. Learn how to create engaging short videos with Azure AI by following our open-source AI Video Playbook. Conclusion Azure Container Apps is designed to simplify modern application development by providing a fully managed, serverless container environment. Whether you need to scale microservices, integrate AI capabilities, enhance security with VNETs, or streamline CI/CD workflows, Azure Container Apps offers a comprehensive solution. By leveraging its built-in features such as automatic scaling, revision-based rollbacks, and deep observability, developers can deploy and manage applications with confidence. These one-minute videos provide a quick technical overview of how Azure Container Apps empowers you to build scalable, resilient applications with ease. FREE Content Check out our other FREE content to learn more about Azure services and Generative AI: Generative AI for Beginners - A JavaScript Adventure! Learn more about Azure AI Agent Service LlamaIndex on Azure JavaScript on Azure Container Apps JavaScript at MicrosoftLearn how to develop innovative AI solutions with updated Azure skilling paths
The rapid evolution of generative AI is reshaping how organizations operate, innovate, and deliver value. Professionals who develop expertise in generative AI development, prompt engineering, and AI lifecycle management are increasingly valuable to organizations looking to harness these powerful capabilities while ensuring responsible and effective implementation. In this blog, we’re excited to share our newly refreshed series of Plans on Microsoft Learn that aim to supply your team with the tools and knowledge to leverage the latest AI technologies, including: Find the best model for your generative AI solution with Azure AI Foundry Create agentic AI solutions by using Azure AI Foundry Build secure and responsible AI solutions and manage generative AI lifecycles From sophisticated AI agents that can autonomously perform complex tasks to advanced chat models that enable natural human-AI collaboration, these technologies are becoming essential business tools rather than optional enhancements. Let’s take a look at the latest developments and unlock their full potential with our curated training resources from Microsoft Learn. Simplify the process of choosing an AI model with Azure AI Foundry Choosing the optimal generative AI model is essential for any solution, requiring careful evaluation of task complexity, data requirements, and computational constraints. Azure AI Foundry streamlines this decision-making process by offering diverse pre-trained models, fine-tuning capabilities, and comprehensive MLOps tools that enable businesses to test, optimize, and scale their AI applications while maintaining enterprise-grade security and compliance. Our Plan on Microsoft Learn titled Find the best model for your generative AI solution with Azure AI Foundry will guide you through the process of discovering and deploying the best models for creating generative AI solutions with Azure AI Foundry, including: Learn about the differences and strengths of various language models Find out how to integrate and use AI models in your applications to enhance functionality and user experience. Rapidly create intelligent, market-ready multimodal applications with Azure models, and explore industry-specific models. In addition, you’ll have the chance to take part in a Microsoft Azure Virtual Training Day, with interactive sessions and expert guidance to help you skill up on Azure AI features and capabilities. By engaging with this Plan on Microsoft Learn, you’ll also have the chance to prove your skills and earn a Microsoft Certification. Leap into the future of agentic AI solutions with Azure After choosing the right model for your generative AI purposes, our next Plan on Microsoft Learn goes a step further by introducing agentic AI solutions. A significant evolution in generative AI, agentic AI solutions enable autonomous decision-making, problem-solving, and task execution without constant human intervention. These AI agents can perceive their environment, adapt to new inputs, and take proactive actions, making them valuable across various industries. In the Create agentic AI solutions by using Azure AI Foundry Plan on Microsoft Learn, you’ll find out how developing agentic AI solutions requires a platform that provides scalability, adaptability, and security. With pre-built AI models, MLOps tools, and deep integrations with Azure services, Azure AI Foundry simplifies the development of custom AI agents that can interact with data, make real-time decisions, and continuously learn from new information. You’ll also: Learn how to describe the core features and capabilities of Azure AI Foundry, provision and manage Azure AI resources, create and manage AI projects, and determine when to use Azure AI Foundry. Discover how to customize with RAG in Azure AI Foundry, Azure AI Foundry SDK, or Azure OpenAI Service to look for answers in documents. Learn how to use Azure AI Agent Service, a comprehensive suite of feature-rich, managed capabilities, to bring together the models, data, tools, and services your enterprise needs to automate business processes There’s also a Microsoft Virtual Training Day featuring interactive sessions and expert guidance, and you can validate your skills by earning a Microsoft Certification. Safeguard your AI systems for security and fairness Widespread AI adoption demands rigorous security, fairness, and transparency safeguards to prevent bias, privacy breaches, and vulnerabilities that lead to unethical outcomes or non-compliance. Organizations must implement responsible AI through robust data governance, explainability, bias mitigation, and user safety protocols, while protecting sensitive data and ensuring outputs align with ethical standards. Our third Plan on Microsoft Learn, Build secure and responsible AI solutions and manage generative AI lifecycles, is designed to introduce the basics of AI security and responsible AI to help increase the security posture of AI environments. You’ll not only learn how to evaluate and improve generative AI outputs for quality and safety, but you’ll also: Gain an understanding of the basic concepts of AI security and responsible AI to help increase the security posture of AI environments. Learn how to assess and improve generative AI outputs for quality and safety. Discover how to help reduce risks by using Azure AI Content Safety to detect, moderate, and manage harmful content. Learn more by taking part in an interactive, expert-guided Microsoft Virtual Training Day to deepen your understanding of core AI concepts. Got a skilling question? Our new Ask Learn AI assistant is here to help Beyond our comprehensive Plans on Microsoft Learn, we’re also excited to introduce Ask Learn, our newest skilling innovation! Ask Learn is an AI assistant that can answer questions, clarify concepts, and define terms throughout your training experience. Ask Learn is your Copilot for getting skilled in AI, helping to answer your questions within the Microsoft Learn interface, so you don’t have to search elsewhere for the information. Simply click the Ask Learn icon at the top corner of the page to activate! Begin your generative AI skilling journey with curated Azure skilling Plans Azure AI Foundry provides the necessary platform to train, test, and deploy AI solutions at scale, and with the expert-curated skilling resources available in our newly refreshed Plans on Microsoft learn, your teams can accelerate the creation of intelligent, self-improving AI agents tailored to your business needs. Get started today! Find the best model for your generative AI solution with Azure AI Foundry Create agentic AI solutions by using Azure AI Foundry Build secure and responsible AI solutions and manage generative AI lifecyclesAI Sparks: AI Toolkit for VS Code - from playground to production
Are you building AI-powered applications from scratch or infusing intelligence into existing production code and systems? AI Sparks is your go-to webinar series for mastering the AI Toolkit (AITK) for VS Code from foundational concepts to cutting-edge techniques. In this bi-weekly, hands-on series, we’ll cover: SLMs & Local Models – Test and deploy AI models and applications efficiently on your own terms locally, to edge devices or to the cloud Embedding Models & RAG – Supercharge retrieval for smarter applications using existing data. Multi-Modal AI – Work with images, text, and beyond. Agentic Frameworks – Build autonomous, decision-making AI systems. What will you learn from this session? Whether you're a developer, startup founder, or AI enthusiast, you'll gain practical insights, live demos, and actionable takeaways to level up your AI integration journey. Join us and spark your AI transformation! You can click here and register for the entire series on the reactor page Episode list You can also sign up for the individual episode and read about the topics covered using the following links: Feb 13 th 2025 – WATCH ON DEMAND @ Introduction to AI toolkit and feature walkthrough In In this episode, we’ll introduce the AI Toolkit extension for VS Code—a powerful way to explore and integrate the latest AI models from OpenAI, Meta, Deepseek, Mistral, and more. With this extension, you can browse state-of-the-art models, download some for local use, or experiment with others remotely. Whether you're enhancing an existing application or building something new, the AI Toolkit simplifies the process of selecting and integrating the right model for your needs. Feb 27 th 2025 – A short introduction to SLMs and local model with use cases In this episode, we’ll explore Small Language Models (SLMs) and how they compare to larger models. SLMs are efficient, require less compute and memory, and can run on edge devices while still excelling at a variety of tasks. We’ll dive into the Phi-3.5 and Phi-4 model series and demonstrate how to build a practical application using these models. Mar 13 th 2025 – How to work with embedding models and build a RAG application In this episode, we’ll dive into embedding models—important tools for working with vector databases and large language models. These models convert text into numerical representations, making it easier to process and retrieve information efficiently. After covering the core concepts, we’ll apply them in practice by building a Retrieval-Augmented Generation (RAG) app using Small Language Models (SLMs) and a vector database. Mar 27 th 2025 – Multi-modal support and image analysis In this episode, we’ll dig deeper into multi-modal capabilities of local and remote AI models and use visualization tools for better insights. We’ll also dive into multi-modal support in the AI Toolkit, showcasing how to process and analyze images alongside text. By the end, you’ll see how these capabilities come together to enhance powerful AI applications. Apr 10 th 2025 – Evaluations – How to choose the best model for you applications needs In this episode, we’ll explore how to evaluate AI models and choose the right one for your needs. We’ll cover key performance metrics, compare different models, and demonstrate testing strategies using features like Playground, Bulk Run, and automated evaluations. Whether you're experimenting with the latest models or transitioning to a new version, these evaluation techniques will help you make informed decisions with confidence. Apr 24 th 2025 – Agents and Agentic Frameworks In this episode, we’ll explore agents and agentic frameworks—systems that enable AI models to make decisions, take actions, and automate complex tasks. We’ll break down how these frameworks work, their practical applications, and how to build and integrate them into your projects. By the end, you’ll have a clear understanding of how to build and leverage AI agents effectively. We will explore how to use and build agentic frameworks using AI Toolkit. Resources AI toolkit for VSCode - https://aka.ms/AIToolkit AI toolkit for VSCode Documentation - https://aka.ms/AIToolkit/doc Building Retrieval Augmented Generation (RAG) apps on VSCode & AI Toolkit Understanding and using Reasoning models such as DeepSeek R1 on AI toolkit - Using Ollama and OpenAI, Google and Anthropic hosted models with AI toolkit AI Sparks - YouTube PlaylistUnlock the Power of AI with Azure AI Assistant Tool
Are you ready to elevate your AI projects? Dive into our latest blog post where we guide you step-by-step through setting up and using the Azure AI Assistant Tool. This powerful tool simplifies the creation, testing, and debugging of AI assistants using Azure OpenAI.Getting Started with the AI Dev Gallery
The AI Dev Gallery is a new open-source project designed to inspire and support developers in integrating on-device AI functionality into their Windows apps. It offers an intuitive UX for exploring and testing interactive AI samples powered by local models. Key features include: Quickly explore and download models from well-known sources on GitHub and HuggingFace. Test different models with interactive samples over 25 different scenarios, including text, image, audio, and video use cases. See all relevant code and library references for every sample. Switch between models that run on CPU and GPU depending on your device capabilities. Quickly get started with your own projects by exporting any sample to a fresh Visual Studio project that references the same model cache, preventing duplicate downloads. Part of the motivation behind the Gallery was exposing developers to the host of benefits that come with on-device AI. Some of these benefits include improved data security and privacy, increased control and parameterization, and no dependence on an internet connection or third-party cloud provider. Requirements Device Requirements Minimum OS Version: Windows 10, version 1809 (10.0; Build 17763) Architecture: x64, ARM64 Memory: At least 16 GB is recommended Disk Space: At least 20GB free space is recommended GPU: 8GB of VRAM is recommended for running samples on the GPU Visual Studio 2022 You will need Visual Studio 2022 with the Windows Application Development workload. Running the Gallery To run the gallery: Clone the repository: git clone https://github.com/microsoft/AI-Dev-Gallery.git Run the solution: .\AIDevGallery.sln Hit F5 to build and run the Gallery Using the Gallery The AI Dev Gallery has can be navigated in two ways: The Samples View The Models View Navigating Samples In this view, samples are broken up into categories (Text, Code, Image, etc.) and then into more specific samples, like in the Translate Text pictured below: On clicking a sample, you will be prompted to choose a model to download if you haven’t run this sample before: Next to the model you can see the size of the model, whether it will run on CPU or GPU, and the associated license. Pick the model that makes the most sense for your machine. You can also download new models and change the model for a sample later from the sample view. Just click the model drop down at the top of the sample: The last thing you can do from the Sample pane is view the sample code and export the project to Visual Studio. Both buttons are found in the top right corner of the sample, and the code view will look like this: Navigating Models If you would rather navigate by models instead of samples, the Gallery also provides the model view: The model view contains a similar navigation menu on the right to navigate between models based on category. Clicking on a model will allow you to see a description of the model, the versions of it that are available to download, and the samples that use the model. Clicking on a sample will take back over to the samples view where you can see the model in action. Deleting and Managing Models If you need to clear up space or see download details for the models you are using, you can head over the Settings page to manage your downloads: From here, you can easily see every model you have downloaded and how much space on your drive they are taking up. You can clear your entire cache for a fresh start or delete individual models that you are no longer using. Any deleted model can be redownload through either the models or samples view. Next Steps for the Gallery The AI Dev Gallery is still a work in progress, and we plan on adding more samples, models, APIs, and features, and we are evaluating adding support for NPUs to take the experience even further If you have feedback, noticed a bug, or any ideas for features or samples, head over to the issue board and submit an issue. We also have a discussion board for any other topics relevant to the Gallery. The Gallery is an open-source project, and we would love contribution, feedback, and ideation! Happy modeling!3.7KViews4likes3Comments