vs code
27 TopicsEnhancing Infrastructure as Code Generation with GitHub Copilot for Azure
Discover the latest update to GitHub Copilot for Azure, designed to streamline Infrastructure as Code (IaC) generation using Bicep or Terraform. With a new update panel, developers can easily modify project details, hosting services, target services, bindings, and environment variables—all within an intuitive UI. This enhancement eliminates the need for chat-based modifications, improving efficiency and reducing errors. Save time, automate infrastructure deployment, and experience seamless cloud configuration. Try the new GitHub Copilot for Azure update today and optimize your Azure development workflow effortlessly!Construyendo una Aplicación Web con Inteligencia Artificial usando Python
En la segunda sesión del GitHub Copilot Bootcamp LATAM, organizado por Microsoft Reactor, el ingeniero Manuel Ortiz, Embajador de Microsoft Learn y líder comunitario en GitHub, guió a desarrolladores en la creación de una aplicación web con capacidades de inteligencia artificial. Este taller práctico combinó fundamentos de desarrollo backend en Python con técnicas avanzadas de integración de modelos de lenguaje de Azure OpenAI. Introducción a Azure Open AI Azure Open AI es una colaboración entre Microsoft y OpenAI que permite a los desarrolladores integrar modelos avanzados de inteligencia artificial en sus aplicaciones utilizando la infraestructura de Azure. Esto ofrece acceso a modelos poderosos como GPT-4, que pueden ser utilizados para una variedad de tareas, desde procesamiento de lenguaje natural hasta generación de texto. Configuración de Azure Open AI Para comenzar a usar Azure Open AI, debes seguir algunos pasos básicos: Crear una Cuenta en Azure: Si aún no tienes una cuenta, puedes crear una en el portal de Azure. Los estudiantes pueden solicitar créditos gratuitos para usar los servicios de Azure. Crear un Servicio Azure Open AI: Accede al portal de Azure y busca "Azure Open AI". Haz clic en "Crear" y selecciona tu suscripción y grupo de recursos. Elige la región y configura el nombre del servicio, que debe ser alfanumérico y sin caracteres especiales. Selecciona el plan de precios adecuado y finaliza la creación del servicio. Obtener las Credenciales: Después de crear el servicio, necesitarás las credenciales (clave de API y endpoint) para autenticar tus solicitudes. Estas credenciales se pueden encontrar en la sección de "Claves y Endpoints" del servicio creado. Integración con Python y Flask Python es uno de los lenguajes de programación más populares para el desarrollo de aplicaciones de inteligencia artificial debido a su simplicidad y vasta biblioteca de herramientas. Durante la configuración, puedes usar varias bibliotecas y herramientas que facilitan el desarrollo de IA con Python, incluyendo: TensorFlow: Una biblioteca de código abierto para aprendizaje automático. Keras: Una API de alto nivel para redes neuronales, que funciona sobre TensorFlow. Scikit-learn: Una biblioteca para aprendizaje automático en Python. Flask: Un microframework para desarrollo de aplicaciones web. Una vez configurado el servicio Azure Open AI, puedes integrarlo en tus aplicaciones Python usando Flask. Aquí tienes un ejemplo de cómo hacerlo: Instalación de las Bibliotecas Necesarias: Crea un entorno virtual e instala las bibliotecas necesarias, como flask y openai. Configuración del Proyecto: Crea un archivo .env para almacenar tus credenciales de forma segura. Configura tu aplicación Flask para cargar estas credenciales y conectarse al servicio Azure Open AI. Creación del Modelo de IA: Utiliza la biblioteca openai para enviar prompts al modelo y recibir respuestas. Integra estas respuestas en tu aplicación web para proporcionar funcionalidades de IA a los usuarios. Ejemplo de Código Aquí tienes un ejemplo simplificado de cómo configurar y usar Azure Open AI en una aplicación Flask: from flask import Flask, request, render_template import openai import os app = Flask(__name__) # Cargar las credenciales del archivo .env openai.api_key = os.getenv("AZURE_OPENAI_API_KEY") openai.api_base = os.getenv("AZURE_OPENAI_ENDPOINT") @app.route("/", methods=["GET", "POST"]) def index(): response_text = "" if request.method == "POST": prompt = request.form["prompt"] response = openai.Completion.create( engine="text-davinci-003", prompt=prompt, max_tokens=100 ) response_text = response.choices.text.strip() return render_template("index.html", response_text=response_text) if __name__ == "__main__": app.run(debug=True) Beneficios de Azure Open AI Acceso a Modelos Avanzados: Utiliza los modelos más recientes y poderosos de OpenAI. Escalabilidad: La infraestructura de Azure permite escalar tus aplicaciones según sea necesario. Seguridad y Conformidad: Benefíciate de las robustas medidas de seguridad y conformidad de Azure. Sigue aprendiendo Si deseas aprender más sobre estas técnicas, mira las grabaciones del GitHub Copilot Bootcamp, comienza a utilizar el GitHub Copilot gratuito y descubre cómo transformar tu manera de programar utilizando inteligencia artificial.GitHub Copilot 2025년 3월 업데이트
Visual Studio Code 2025년 2월 릴리스에 오신 것을 환영합니다. 이번 버전에서는 다양한 기능을 추가했으며, 특히 GitHub Copilot과 관련한 주요 업데이트는 다음과 같습니다: Next Edit Suggestions (미리보기) - Copilot이 다음으로 수정할 가능성이 높은 코드를 예측합니다. Agent 모드 (미리보기) - Copilot이 자동으로 작업을 완료합니다. Copilot Edits의 노트북 지원 - 노트북 파일의 편집을 쉽게 할 수 있습니다. 코드 검색 - Copilot이 채팅 프롬프트와 관련된 파일을 검색합니다. 사용자 지정 지침 GA - Copilot을 사용자의 요구에 맞게 설정할 수 있습니다.AI Sparks: AI Toolkit for VS Code - from playground to production
Are you building AI-powered applications from scratch or infusing intelligence into existing production code and systems? AI Sparks is your go-to webinar series for mastering the AI Toolkit (AITK) for VS Code from foundational concepts to cutting-edge techniques. In this bi-weekly, hands-on series, we’ll cover: SLMs & Local Models – Test and deploy AI models and applications efficiently on your own terms locally, to edge devices or to the cloud Embedding Models & RAG – Supercharge retrieval for smarter applications using existing data. Multi-Modal AI – Work with images, text, and beyond. Agentic Frameworks – Build autonomous, decision-making AI systems. What will you learn from this session? Whether you're a developer, startup founder, or AI enthusiast, you'll gain practical insights, live demos, and actionable takeaways to level up your AI integration journey. Join us and spark your AI transformation! You can click here and register for the entire series on the reactor page Episode list You can also sign up for the individual episode and read about the topics covered using the following links: Feb 13 th 2025 – WATCH ON DEMAND @ Introduction to AI toolkit and feature walkthrough In In this episode, we’ll introduce the AI Toolkit extension for VS Code—a powerful way to explore and integrate the latest AI models from OpenAI, Meta, Deepseek, Mistral, and more. With this extension, you can browse state-of-the-art models, download some for local use, or experiment with others remotely. Whether you're enhancing an existing application or building something new, the AI Toolkit simplifies the process of selecting and integrating the right model for your needs. Feb 27 th 2025 – A short introduction to SLMs and local model with use cases In this episode, we’ll explore Small Language Models (SLMs) and how they compare to larger models. SLMs are efficient, require less compute and memory, and can run on edge devices while still excelling at a variety of tasks. We’ll dive into the Phi-3.5 and Phi-4 model series and demonstrate how to build a practical application using these models. Mar 13 th 2025 – How to work with embedding models and build a RAG application In this episode, we’ll dive into embedding models—important tools for working with vector databases and large language models. These models convert text into numerical representations, making it easier to process and retrieve information efficiently. After covering the core concepts, we’ll apply them in practice by building a Retrieval-Augmented Generation (RAG) app using Small Language Models (SLMs) and a vector database. Mar 27 th 2025 – Multi-modal support and image analysis In this episode, we’ll dig deeper into multi-modal capabilities of local and remote AI models and use visualization tools for better insights. We’ll also dive into multi-modal support in the AI Toolkit, showcasing how to process and analyze images alongside text. By the end, you’ll see how these capabilities come together to enhance powerful AI applications. Apr 10 th 2025 – Evaluations – How to choose the best model for you applications needs In this episode, we’ll explore how to evaluate AI models and choose the right one for your needs. We’ll cover key performance metrics, compare different models, and demonstrate testing strategies using features like Playground, Bulk Run, and automated evaluations. Whether you're experimenting with the latest models or transitioning to a new version, these evaluation techniques will help you make informed decisions with confidence. Apr 24 th 2025 – Agents and Agentic Frameworks In this episode, we’ll explore agents and agentic frameworks—systems that enable AI models to make decisions, take actions, and automate complex tasks. We’ll break down how these frameworks work, their practical applications, and how to build and integrate them into your projects. By the end, you’ll have a clear understanding of how to build and leverage AI agents effectively. We will explore how to use and build agentic frameworks using AI Toolkit. Resources AI toolkit for VSCode - https://aka.ms/AIToolkit AI toolkit for VSCode Documentation - https://aka.ms/AIToolkit/doc Building Retrieval Augmented Generation (RAG) apps on VSCode & AI Toolkit Understanding and using Reasoning models such as DeepSeek R1 on AI toolkit - Using Ollama and OpenAI, Google and Anthropic hosted models with AI toolkit AI Sparks - YouTube PlaylistPrompt Engineering with GitHub Copilot and JavaScript
Mastering Prompt Engineering with GitHub Copilot & JavaScript AI-powered coding is here, and prompt engineering is the key to unlocking its full potential. 🚀 In this blog post, we explored how GitHub Copilot can enhance code generation, debugging, and API development while ensuring responsible AI use. From unit test automation to code optimization, we covered practical ways to boost productivity. Want to level up your skills? Join the GitHub Copilot Bootcamp and claim your discount on GitHub certification! #AI #GitHubCopilot #JavaScript